

PG - 365

II Semester M.Sc. Degree Examination, June 2015 (CBCS) **MATHEMATICS** M 204 T: Partial Differential Equations

Time: 3 Hours Max. Marks: 70

Instructions: 1) **All** questions have **equal** marks.

2) Answer any five questions.

- 1. a) Give the geometrical interpretation of a quasilinear first order partial differential equation. Also derive the characteristic equations for the same.
 - b) Find the integral surface of the partial differential equation

$$xp + yq = z$$

which contains the circle $x^2 + y^2 + z^2 = 4$ and x + y + z = 2.

- c) Use method of characteristics to solve $(y u) u_x + (u x) u_y = x y$ with (5+4+5)condition u = 0 on xy = 1.
- 2. a) Find the solution of the equation $u(x + y) u_x + u(x y) u_y = (x^2 + y^2)$ with the Cauchy data u = 0 on y = 2x.

b) Solve:
$$p^2 + q + u = 0$$
 with $u(x, 0) = x$. (7+7)

- 3. a) Transform the standard second order hyperbolic partial differential equation to its canonical form.
 - b) Classify the equation:

 $\sin^2 x u_{xx} + \sin^2 x u_{xy} + \cos^2 x u_{yy} = x$ and hence reduce it to its canonical form. (8+6)

4. a) Solve the following by the Monge's method:

$$(1+q)^2 r - 2(1+p+q+pq) s + (1+p)^2 t = 0.$$

b) Verify whether the following equation

$$x^3 u_{xx} + (y^2 + yz) u_{yy} + 3x^2 u_x + (2y + z) u_y = 0$$
 is self-adjoint or not. (8+6)

(7+7)

5. a) Solve by variable separable method the following IBVP:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \ 0 < x < 1 \ ; \ t > 0$$

Subject to

$$\frac{u(x, 0) = f(x)}{\frac{\partial u}{\partial t}(x, 0) = g(x) }$$
 $0 \le x \le 1$

$$u(0, t) = 0 = u(1, t), t \in R$$

- b) Show that a variable separable solution of wave equation in spherical coordinates leads to a Legendre differential equation.
- 6. State and prove the Dirichlet problem in a circular region.
- 7. a) Solve by appropriate Fourier transform the following IBVP:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \ 0 \le x < \infty ; t \ge 0$$

Subject to

$$u(x, 0) = f(x), 0 \le x < \infty$$

$$\frac{\partial u}{\partial x}(0,t) = 0, t > 0$$

b) Solve
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
, $0 < x < 1$; $t \ge 0$

Subject to u(x, 0) = 0; $0 < x \le 1$

8. Find the Green's function for the following:

a)
$$\frac{\partial u}{\partial t} - k \frac{\partial^2 u}{\partial x^2} = f(x) \delta(t); -\infty < x < \infty, t > 0$$

Subject to

$$u(x, 0) = 0 ; -\infty < x < \infty$$

b)
$$\frac{\partial^2 u}{\partial t^2} - C_1^2 \frac{\partial^2 u}{\partial x^2} = Q_1(x), -\infty < x < \infty, \ t \ge 0$$

Subject to

$$\frac{u(x,0) = 0}{\frac{\partial u}{\partial t}(x,0) = 0}; -\infty < x < \infty,$$

$$\frac{u \to 0}{\frac{\partial u}{\partial x} \to 0}$$
 as $|x| \to \infty.$ (7+7)